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1. Phys.: Condens. Matter 5 (1993) 8563-8568. Printed in the UK 

The use of the correlation function technique for the Anderson 
transition 
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Turkey 

Received 17 September 1993 

Abstract. For a completely disordered laltice, it is found that vanishing mobility is attained at 
a critical atomic density of = 0.2 which agrees adequately with known resulk. 

1. Introduction 

The Anderson transition is a property of disordered conductors whereby the system goes 
from a metallic to an insulating state as the disorder is increased. To study this phenomenon 
one starts with a model of the conducting state in which the disorder may be due either to 
lattice irregularity (Matsubara and Toyozawa 1961) or site energies (Edwards and Thouless 
1972) or both (Mott and Davis 1971). One chooses a parameter to memure the degree of 
each type of irregularity and changes the parameters to vary the randomness of the system. 

There are different methods to study the transition regime such as looking at the 
mean free path L (Ioffe and Regel 1960, Debney 1976). using the L ( E )  localization test 
(Economou and Cohen 1972). and using correlation function techniques which directly 
look at the transport coefficients (Vollhardt and Wolfle 1980, Gotze 1981). Calculating the 
transport coefficients from a suitable formula is a direct way to examine the above transition, 
since a vanishing value of the coefficient is indicative of the insulating state. Currently, 
new and practical formulae are being developed for transport coefficients (Milinski 1991. 
Unal et al 1992) and their capabilities should be tested through various applications. 

In this work we apply the newly derived mobility formula of Unal et a1 (1992) 

to a completely disordered lattice. Here e is the electronic charge, N is the total number of 
electrons and art,  ur" are the frequency derivatives of the correlation function 
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In the above equations, L is the usual Liouville operator, o represents frequency and FI 
is the intemal force related to the momentum Px through F, = j L P,. It has been shown 
(Una1 and Alkan 1993) that a,(o) can be put into the form 

The meaning of each term in this expression will be defined in the following sections. 
The density of the medium, PA, is considered in this paper to be the randomness 

parameter, and as we increase it we observe that the mobility drops to zero, thus giving the 
onset of the Anderson transition. As will be discussed later, the critical atomic density we 
obtain, pi'3ao = 0.2. agrees reasonably with other estimates (Unal 1987, Debney 1976). 
We take this to be an indication that (1.1) works very well in this case. 

Section 2 sets out the model Hamiltonian, section 3 is about the evaluation of a,', CY," 
and section 4 deals with the transition density through an examination of @. Finally, in the 
appendix we present detailed calculation of some integrals. 

2. The model Hamiltonian 

In this paper we consider the scattering of electrons in a metallic substance whose lattice 
site positions Rj have no regularity, which is known as a completely disordered lattice. 
Since this model is described fully elsewhere (Matsubara and Toyozawa 1961) we shall 
present here only an outline. Each atom is assumed to have an effective Bohr radius ao 
and is supposed to give a Is electron to the medium. The mean atomic distance U is 
given by u3 = 5 1 / N  = p- '  where 51 and N show the volume and the number of atoms, 
respectively, and where p is the atomic density. In the quasi-momentum representation the 
system Hamiltonian H = HO t U has the forms 

where Hk,t = (k'lHlk), IC' = k + q. and C:, ck are creation and annihilation operators for 
the electrons. Using the same ideas as in a previous work (Unal 1987) we can replace the 
diagonal elemem of H by their averages (Hkk) = ( N / Q ) V ( k )  = - t ( k ) ,  where V ( k )  is 
the Fourier transform of the interatomic hopping potentials and t ( k )  is given by 

Later in our calculation we shall need ( I & I 2 )  = (1/N)1Uq12, where lU,12 is  given by 

IUqlz = 26: + 2 4  + &d3 + d'(7 + (202112 + k'l*)Il6(1 + 4lIC + k'12)4. (2.4) 

Here A = 4(a00/a)ir'/~ has been defined. The mobility equation contains the terms a,' 
and a,", and we can write out these expressions, in our case, by comparing with similar 
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expressions in the work of Unal and Alkan (1993). Looking at their (2.6) and (2.7) we can 
write our a,', a," respectively as 

a,' = 5 Eii2qZILlql2nk'G'(AE') (2.5) 
kq 

where AE' = Ex+q - E k ,  nk is the occupation number and nk' stands for the derivative of 
the occupation number with respect to Eh. For reference purposes it has been necessary to 
use k vectors multiplied by h,  but in fact units where h = 1 have been employed in this 
paper. 

3. Evaluation of a,' and a?'' 

The sums in (2.5) and (2.6) may be evaluated by turning them into integrations in the usual 
way, by using the relations 

If we denote the angle between the vectors k and q by a, with 0 = R -a, cos 0 = U, the 
energy difference AE' becomes 

h'kq h2qZ 
m 2m 

AE' = --U + -. 
Integration is carried out in the order du + dq + dk because, with this order, during 
the transformations of delta functions into simpler forms, Jacobians never become zero; 
otherwise, nothing fixes this order. The evaluation of a,' and ar" are given in the appendix, 
and the results are 
~ , ' = C ~ [ ( I + ~ 2 x 2 ) ( 1 + 4 ~ 2 ~ 2 ) 3 [ 1 6 + ~ ( ~ / ~ ) ( I + ~  2 x 2 6  ) 

+ &(l/x3x)( l  + n 2 ~ 2 ) 6 ]  - &(I/~~x)[12288n~x~(1 
+ $(I +nZx2)(1 + 4n2x2) + $(I + 4 n ' ~ ~ ) ~  + $](I + n2xz)'j (3.2) 

01,'' = -C2{960ir2x2( 1 4- 4R 2 X 2 4  ) + 7 k 7 X 9 (  1 + RZX2)* - 384( I + 4n2X2)4 

- [ s ( x / n )  - 2 . 6 2 5 ~ ~ ~  - 1 2 . 2 5 ~ ~ ~ ~  - 7n5x7](1 fil 2 x 2 8  ) ). (3.3) 
Here CI, CZ are constants and x is a parameter defined as x = ua/a. Using these expressions 
in (1.1) we may obtain the mobility, p. as a function of x .  When the mean interatomic 
distance a is large, corresponding to small values of x, the atoms in the system are far 
apart from each other and in this case we expect that the scattering of an electron should 
be weak. The mobility will then have a large value, but as the parameter x is increased 
the scattering of an electron with atoms will take place more effectively; therefore we may 
expect a decrease in the mobility. In order to check this expectation we looked at a," 
appearing in the numerator of the mobility equation (1.1): a," had a value of 384Cz for 
x = 0 and it decreased as we slowly increased the parameter x .  The value of x = 0.2 was 
just enough to make al" (and hence p) zero. While doing these processes we observed 
that a,' was never zero. We thus concluded that the entire system changed its state from a 
conducting to a non-conducting one: an Anderson transition took place. 
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4. Conclusions 

As we mentioned in the introduction, there is currently a great deal of effort in developing 
new and practical formulae for the calculation of transport coefficients of condensed matter. 
These formulae differ from each other by the ease with which an actual computation can 
be carried out in particular applications. The correlation function technique of Vollhardt 
and Wolfle (1980) and of Gotze (1981) was used by one of us in a previous work and gave 
the result p ~ ' 3 u ~  = x = 0.29 (Unal 1987), but in this paper we use the mobility formula 
developed by Milinski (1991) and the corrected version developed by Una1 et ol (1992). 
The mobility formula has not been used before in the study of the Anderson transition for a 
completely disordered lattice model. In this respect our work aims to show the usefulness of 
the mobility formula for studying the Anderson transition. Using the Ioffe-Regel condition 
for the mean free path of electrons, Debney (1976) found that this transition took place 
at x = 0.33 while Fertis et al (1981) and Logan and Volynes (1985) obtained the values 
x = 0.16 and x = 0.12 respectively. Our result in this paper, x = 0.20, falls right inside 
the region subtended by the above values. This shows that the use of the mobility formula 
may constitute a basis for the study of the Anderson transition. 

Appendix. 

In order to evaluate cr,' the expressions of 1Uq12 and AE', given by (2.4) and (3.1) 
respectively, are used in  (2.5). For the nk' term appearing in (2.5) we use the result 

obtained from (25) and (27a) of a previous work (Unal 1987) under the same approximations 
cited therein. Now a,' becomes 

The term S'(AE') has been transformed as follows (Una1 1987): 

hk . h q  m2 
S' (v  - vo) 6' ( -- U+%) =-h?k?hZq2 (A.3) 

and since the root uo = hq/2hk has to remain between 0 and 1 we have the limitation 
hq = Z k  during the dq integral. A factor of 2x comes from the integral and thus we 
have 

I 
- /d"' hZqZ d(hq) S'(w - WO)[.] du. (A.4) 

, 231 2xVm' 
cur = --- - 

3 N h  (2n) ~ h2k2 1 - A '  
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The notation 1.1 denotes all the contents of the square brackets in (A.2). Equation (A.4) 
becomes 

a,’ = - 3Nfi3n Vm2 
7 h k  

s(tF - E x )  1 h2qz d(hq) [ ( (@‘nao/a)2 + 1 4 n ( a o / a ~ )  
2 2 1 - A !  ( 1  + aik2)a 

S’(U - W O )  du xS(1 - i i q l u 2 k ) + j  I (Mnao/aY 
o [ l  + ai(k2 - 2kqu + q2)I6 

’ 7 +a@’ - 4 k u  + 2) - dv , + 2X(ao/a)3 j (A.5) 
0 [ I  +ai(4kZ-4kqu+q2)I4 

Integration of the second and third terms inside the large square brackets is done by observing 
the rule 

(A.6) 

1 
f(x)S’tx) = f (xo)8’(x)  - f’(x0)W) 

a’ J = - 3 N h 3 n  E x  - h2k2 1 8 ( C F - € k ) [ i B X  1 - A ’  h2q2 d(hq)( (64na0la)~  (1  + a;k2)6 + 1 4 n ( a o / a ~ )  
k 

(641raola)~ zirx 

x 2hk S(hq - 2hk)  + ( 1  +aak2)62hkb h2q2 d(hq) S(hq - 2R) 

- 12a0k (64na0ia)’ s7hx,-,3q3 d(hq) 
(1  fa;k2)’ o 

Bk 7 +ai(4k2 -4’) 
h q22hk 6(hq - u2k) d(hq) 

[ 1 + ai(4k2 - q2)I4 

[I + ai(4k2 - 

+ ~ a o / a ) 3  1 
fi3q3 d W ] .  (A.7) 

2(4k2 - q2) - 24~(ao/a)~a;k  gBk + 

The d@q) integrals are easily cmied out, and while doing V / ( Z Z ) ~  j” d’k integration we 
have to take into account the relation 

2k2 4 (1 +no F) 
384n(ao/a)a;k~ 

[ 6(hk - kF) + G(hk + k ~ ) ] .  (A.@ 

After the dk integration we have to put k = kF, and on putting a = n/kp we can arrange 
the whole expression in terms of the parameter x = ao/a. The result is 

8(EF - E x )  = 

+ 224n3x5(1 + 4n2x2)?’(1 t n2x2)7 -48ir4x4(64nx)2(1 + 4n2x2)3 
-nx3((9+4n2x2)[3(1 +4n2x2)4-4(1 +4n2x2)’+ 11 
- 3(1 + 4 2 ~ ’ ) ~  + n2xZ(1 + 4x2xZ) + 8(1 + 4 ~ ~ x ~ ) ‘  
- 6( i  + ~ z ~ x ~ ) ~ I ( ~  + ~ ~ ~ ~ ) ~ n / ~ ~ ~ ~ ( i  + 4n2x2)3(i + K 2 x 2 ) 7 .  (A.% 

To evaluate ar” we can transform the term #’(A/?) in (2.6) as 

8” -- hkliq h2q2 m3 S”(u - uo).  ( m U +  Zm) = A3k3h3q3 (A.lO) 
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The du integration is carried out going through the same steps as in (A.4) and (A.5). this 
time using the rule 

f(x)  8’’W = f(xo) - Z f ’ ( x 0 )  S ’ ( x )  + f” (x0)  S ( x ) .  (A.1 I )  

The d(h9) integral is lengthy but easy to cany out, and finally the d(hk) integral results 
essentially in putting k = kF. We obtain 

(64~~)~[-96On~x~(l + 4n2~2)4 
Vm’ 4nV ( I  +n2x2)4 

3Nh2n (2n)3h3 384n(1 - A ‘ )  
a,‘’ = -- 

- 72n7x9(1 + n 2 x 2 8  ) + 384(1 + 4n’~’)~  + [ g ( x / n )  - 2 . 6 2 5 ~ ~ ’  

- l 2 . 2 5 ~ ’ ~ ’  - 7n5x7](1 + n2x2)*)/(1 + n2x2)’((1 + 4j~’x’)~.  (A.12) 

In the mobility formula ( I .  1) a,“ appears in the numerator and a,‘ in the &nominator, and 
so to get the zero of p we have to search where. a,“ goes zero. If we look at the curly 
bracket term in (A.12) we see that for x = 0 it takes the value 384: as x slowly increases 
it becomes small and passes through zero at x = 0.201 290 399 297 936. After this value 
of x the curly bracket term always remains negative and does not change sign. There is 
therefore no root other than x = 0.2 in the region 0 Q x 6 I. The whole expression is very 
sensitive to changes in the value of x ;  this is because of the high powers of x appearing in 
the expression. Practically we may take the root to be x = 0.2. Stated in another way this 
corresponds to pA no = 0.2. 1 /3 
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